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Abstract

A number of algorithms have been developed to solve the problem of where to
place a limited number of sensors in a water distribution network such that public
health protection from accidental or intentional contaminant injections is maxi-
mized. However, the ability of these algorithms to solve real-world, large-scale
sensor placement problems has yet to be demonstrated. Existing research exhibits
at least one of three fundamental flaws. First, most algorithms are tested exclu-
sively on small-scale networks, leaving open the question of scalability. Second,
many algorithms are heuristic in nature and no effort has been made to establish
empirical or theoretical performance bounds. Third, the modeling assumptions
underlying some algorithms are physically unrealistic, raising questions regarding
the utility of the resulting solutions in operational settings. We describe a model-
ing methodology that precisely captures the impact of contaminant injection on a
distribution network. Using exact methods, we generate provably optimal sensor
placements for networks containing up to roughly 3,000 junctions using high-
performance computing platforms; the magnitude of the model currently prevents
solution for larger networks. Next, we use a simple heuristic based on GRASP,
local search, and path relinking to quickly generate solutions to even larger net-
works containing up to 12,000 junctions. Where solvable viaexact methods, we
demonstrate that the heuristic yields solutions that are globally optimal. These
results conclusively demonstrate the practical application of this heuristic to solve
very large sensor placement problems under realistic modeling assumptions, and
uniquely provides an empirical performance bound for the algorithm.

1 Introduction

Research on the problem of where to place sensors in water distribution networks to
minimize the damage incurred by the intentional injection of chemical and biological
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contaminants has intensified since the attacks of 9/11; the vulnerability of these sys-
tems has become more widely appreciated. Accurate models ofthe sensor placement
optimization problem now exist, in addition to methodologies for generating the asso-
ciated model parameters. However, while algorithms for generating solutions to these
models have been introduced, their applicability to large-scale, real-world water distri-
bution networks is far from clear. First, most algorithms are tested exclusively on small-
scale networks, leaving open the question of scalability. Second, many algorithms are
heuristic in nature and no effort has been made to establish empirical or theoretical
performance bounds. Third, the modeling assumptions underlying some algorithms are
physically unrealistic, raising questions regarding the utility of the resulting solutions
in operational settings.

In this paper, we analyze the scalability of exact and heuristic algorithms for sensor
placement optimization under very realistic modeling assumptions. We show that ex-
act integer programming methods can generate optimal solutions to moderately-sized
networks, while heuristic methods can quickly locate optimal solutions to these same
networks, but are further capable of generating (possibly sub-optimal) solutions to very
large networks containing up to 12,000 junctions. This is the first demonstration of
truly scalable algorithm performance for heuristic sensorplacement optimization.

The rest of this paper is organized as follows. We briefly summarize and categorize
prior research on sensor placement optimization in§2. In §3, we describe our formula-
tion of the sensor placement problem and relate it to the well-knownp-median problem.
Both exact and heuristic solution approaches are introduced in §4, while the empirical
performance of these methods is analyzed in§5. We discuss the implications of our
results in§6 and recap our primary conclusions in§7.

2 Optimization for Sensor Placement: Background

Conceptually, the objective in a sensor placement optimization problem (SPOP) is sim-
ple: to place a limited number of sensors in a water distribution network such that the
impact to public health due to the accidental or intentionalinjection of contaminant is
minimized. The broader research community has yet to arriveat a more specific, con-
crete definition that is widely (or even narrowly) agreed upon; research typically differs
in terms of the precise definition of public health impact, the assumed characteristics of
the deployed sensors, the fidelity of the contaminant transport simulation, and a host of
other details. However, existing formulations of the SPOP can be usefully delineated
in terms of the fidelity with which water quality changes resulting from an injection
is captured. Two broad categories in the current literaturecan be identified, which we
refer to simply as static and dynamic.

In a static formulation of the SPOP, the impact of an attack at a particular network
junction is estimatedby analyzing some combination of (1) flow directions and veloc-
ities obtained via hydraulic simulation, (2) pipe lengths,and (3) junction demands. A
prominent example of a static SPOP formulation is describedby Kessler et al. [1998],
and is based on the notion of an auxiliary network. An auxiliary network is a directed
graphG = (V, E) where elements of the setV represent nodes, e.g., junctions and
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tanks, of the distribution network. The edge setE is determined via analysis of hy-
draulic simulation outputs. For each pair of nodesvi andvj for which there is flow
from vi to vj at any point in the simulation, a directed edgee = (vi, vj) is added to
E. Edges ine = (vi, vj) ∈ E are weighted by the average velocity fromvi to vj over
the course of the simulation. The auxiliary graph is used in conjunction with the net-
work pipe lengths to compute the shortest travel time between all pairs of vertices in
the network. The travel times are then used to estimate the network-wide impact of an
attackα at vi if α is first detected by a sensor located at a vertexvj; the specific mea-
sure of health impact considered by Kessler et al. is the total volume of contaminated
water consumed before detection by at least one sensor. Kessler et al. solve their static
formulation of the SPOP via heuristic solution of a corresponding set cover problem.

Berry et al. [2003] introduce a static SPOP formulation in which the objective is to
minimize the expected fraction of the population exposed toan injected contaminant.
Here, hydraulic simulation results are used to compute a fixed flow orientation for each
pipe in the network over a series ofp distinct non-overlapping time intervals, referred
to as patterns. The formulation is time-independent, in that travel times are not consid-
ered; rather, a nodevj is protected against an attack at vertexvi if and only if there is
a sensor capable of detecting the flow betweenvi andvj . Watson et al. [2004] gener-
alize the Berry et al. formulation to consider a range of optimization objectives, some
of which account for travel times in a manner consistent withthat of the Kessler et al.
formulation. Both Berry et al. and Watson et al. solve the resulting SPOP formulations
via exact solution of corresponding mixed-integer programs.

There are two key assumptions underlying any static SPOP formulation, e.g., that of
Kessler et al. First, factors such as contaminant dilution,concentration level, and mode
of attack are not modeled. Rather, the static SPOP simply tracks theprojected presence
or absence of contaminant at various network points over time, and assumes identi-
cal contaminant and water flow dynamics. Second, the contaminant transport model
is based on aggregated flow velocities, such that the true dynamics of the underlying
flow are only approximated. Each of these assumptions represents a potentially signif-
icant deviation from reality, and the impact of these approximations on the quality of
solutions to the SPOP are currently poorly understood.

In contrast,dynamic SPOP formulations correct for each of the aforementioned de-
ficiencies by preciselycharacterizing the impact of an attack at a given network junction
on the rest of the network. First introduced by Ostfeld and Salomons [2004], dynamic
SPOP formulations use detailed water quality simulation results to compute contami-
nant concentration time-series for each junction in the network. These time-series can
be used to determine the impact of an attackα at vi if α is first detected by a sensor
located at a vertexvj . In addition to accuracy improvements relative to their static
counterparts, dynamic SPOP formulations have the added advantage that a full range
of attack types and sensor characteristics can be modeled, as the network response is
completely specified by contaminant level time-series at each network junction; the
accuracy of the formulation is strictly limited by the accuracy of the water quality sim-
ulation. Mirroring the earlier approach of Kessler et al., Ostfeld and Salomons solve
their dynamic SPOP via solution of a corresponding set covering problem. However,
the optimization objective is more realistic: to minimize the volume of polluted wa-
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ter possessing a concentration of pollutant higher than a minimum hazard level. Most
recently, Berry et al. [2004] discuss a dynamic SPOP formulation for minimizing the
expected volume of contaminated water consumed before detection, which is expressed
and solved as a mixed-integer program.

Finally, we observe that the accuracy of dynamic SPOP formulations comes with
a price, specifically in the form of a very large number of computationally intensive
water quality simulations; in contrast, static SPOP formulations are based strictly on
comparatively cheap hydraulic simulations. We explore this issue further in both§5
and§6.

3 Sensor Placement and the p-Median Problem

We now introduce the specific formulation of the dynamic SPOPused in our analysis.
Our objective is to minimize the total volume of contaminated water consumed, at any
concentration level. We assume that we have a budget ofp of sensors that can be
placed at any junction in a distribution network, each sensor is capable of detecting any
concentration level of contaminant, and a general alarm is immediately raised when
contaminant is detected such that all further consumption is prevented. As discussed in
§2, we observe that none of these assumptions are binding, andcan be relaxed without
impacting the mathematical structure of our formulation. We view the structure of a
water distribution network as an undirected graphS = (V, E); elements of the setV
represent junctions and sources, while elements of the setE represent pipes, pumps,
and valves.

Let A denote the set of attacks against which a sensor configuration consisting of
p sensors is intended to protect. We assume attacks can occur at any vertexv ∈ V of
the network, i.e, injection via backflow is possible. Elements of a ∈ A are quadru-
ples of the forma = (vx, ts, tf , X), wherevx ∈ V is the attack vertex,ts andtf are
the attack start and stop times, andX is the attack profile (e.g., arsenic injected at a
particular concentration at a given rate). For each attacka ∈ A, we use existing wa-
ter quality analysis software (e.g., as found in EPANET [Rossman, 1999]) to compute
the contaminant concentration at each node in the network from timets to an arbitrary
point th ≥ tf in the future. The results of such an analysis are expressed in terms of
concentration time-seriesτj for eachvj ∈ V , with samples at regular (arbitrarily small)
intervals within[ts, th]. Using the set ofτj in conjunction with demand profiles, it is
straightforward to compute the total volume of contaminated waterda(t) consumed
(network-wide) due to an attacka at any given point at timet ∈ [ts, th]. Next, letγaj

denote the earliest timet at which a hypothetical sensor at vertexvj can detect con-
taminant due to an attacka; γaj = th if no contaminant ever reachesvj , andγaj can
be easily computed fromτj. Finally, we definedaj = di(γaj), i.e., the total volume of
contaminant consumed due to an attacka if the attack is first detected by a sensor atvj .

Given a setA of attack scenarios, a setV of network vertices, and a setdaj of impact
parameters, we take as our design objective the minimization of the aggregate impactI
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over all attack scenarios, where

I =
|A|∑

i=a

|V |∑

j=1

dajxaj (1)

subject to the constraints
|V |∑

j=1

xaj = 1, ∀a ∈ A (2)

xaj ≤ sj, ∀a ∈ A, ∀j ∈ V (3)

|V |∑

j=1

sj = p (4)

0 ≤ xaj ≤ 1, sj ∈ {0, 1}, ∀a ∈ A, ∀j ∈ V. (5)

A variablesj (Constraint 5) indicates whether one of thep available sensors is placed
on vertexvj , while Constraint 4 requires that a total of exactlyp sensors be placed. A
variablexaj (Constraint 5) indicates whether an attacka ∈ A is detected by a sensor
at vertexvj ; Constraint 3 enforces the condition that detection can only occur atvj if a
sensor is placed there. Finally, Constraint 2 requires thatdetection of each attacka ∈ A

be assigned to a single vertexvj ; in other words, there is always a first vertex in the
network to detect an attack. We observe that this formulation is conceptually identical
to the dynamic SPOP introduced by Berry et al. [2004]. Our variant is more explicit, for
reasons discussed below, in thatdaj are defined for all possible combinations of attack
a ∈ A and vertexvj ∈ V – despite the fact that in practice it is typically not possible
for contaminant to flow between arbitrarya andvj .

Although not recognized at the time of its introduction, theBerry et al. dynamic
SPOP formulation is identical to the well-knownp-median facility location problem
[Mirchandani and Francis, 1990].1 In the p-median problem,p actual facilities (e.g.,
central warehouses) are to be located onm potential sites such that the sum of distances
daj between each ofn customers (e.g., retail outlets)a and the nearest facilityj is
minimized. In contrasting the dynamic SPOP andp-median problems, we observe
equivalence between (1) sensors and facilities, (2) attacks and customers, and (3) attack
impacts and distances. While Berry et al. allow placement ofat most p sensors,p-
median formulations generally enforce placement of allp facilities; in practice, the
distinction is irrelevant unlessp approaches the number of possible locationsm.

4 Solution Techniques for the p-Median Problem

Equivalence with thep-median problem has an immediate bearing on our approach
to solving the dynamic SPOP, as it is now possible to directlyleverage the extensive
literature on algorithms for solving thep-median problem. Thep-median problem, e.g.,
as defined in§3, can in principle be solved directly as a mixed-integer program (MIP).

1We thank Phil Meyers at Pacific Northwest National Laboratory for identifying this relationship.
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Further, optimal integer solutions frequently result by relaxing the integral constraints
and solving the corresponding pure linear program (LP) [ReVelle and Swain, 1970].
However, due to the rapid growth in the number of constraintsand variables as problem
size increases, heuristics are often used in practice when dealing with large problem
instances. We explore the scalability of LP and MIP approaches to solving dynamic
SPOPs in§5.2.

The current state-of-the-art heuristic for thep-median problem is a hybrid approach
recently introduced by Resende and Werneck, which we denoteRW. The core mech-
anism underlyingRW is a Greedy Randomized Adaptive Search Procedure (GRASP),
which is used to generate a set of high-quality solutions using biased greedy construc-
tion techniques. Steepest-descent hill-climbing is then used to move from each of the
resulting solutions to a local optimum. Finally, path relinking is used to further explore
the set of solutions lying at the intersection of the resulting local optima. For a complete
description ofRW, we refer the reader to [Resende and Werneck, 2004]. We explore the
application ofRW to solving dynamic SPOPs below in§5.3, and contrast the resulting
performance with that of the previously described MIP approach.

5 Empirical Results

We now describe the application, performance, and limitations of MIP/LP solvers and
theRW heuristic for the dynamic SPOP for a number of large-scale, real-world water
distribution networks. Our methodology and test networks are detailed in§5.1; results
for MIP/LP and heuristic approaches are described in§5.2 and§5.3, respectively.

5.1 Methodology and Test Problems

Our primary objective is to analyze the ability of both MIP solvers and theRW heuristic
to locate optimal solutions to large-scale instances of thedynamic SPOP. For a given
test network, we define the set of attacksA as comprising four distinct possible attacks
at each junction, with start timests = 0, 6, 12, and 18 (units are in hours). Following
Berry et al. [2004], each attack consists of a 5500 gallon attack (the storage capacity
of a typical water truck) in which contaminant is injected ata rate equal to the outflow
rate from the attack vertexvx. Consequently, the end-timetf is a function of network
hydraulics. EPANET [Rossman, 1999] is used to perform waterquality simulations for
each attack scenario, and the resulting concentration time-seriesτj are used to compute
the impact factorsdaj for each combination ofa ∈ A andvj ∈ V . Simulations begin
at timets = 0 and proceed for a total of72 hours, i.e., over multiple iterations of the
typical demand cycle of 24 hours. As previously indicated, our selection of attack type
is arbitrary; the methodology can accommodate any injection scenario supported by
EPANET.

We perform empirical studies on a three real-world test networks, which we denote
SNL-1, SNL-2, and SNL-3. These networks respectively contain roughly 400, 3000,
and 12000 junctions, and 450, 4000, and 14000 pipes. The actual identities, exact di-
mensions, and pump/valve/tank/reservoir/well counts of these networks are withheld
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for security purposes. We observe that these models arenot all-pipes models; the com-
plexity is strictly due to size of the region served by the particular utilities from which
the models were obtained. SNL-3 is an order of magnitude larger than any previously
considered in the sensor placement optimization literature, and SNL-1 is an order of
magnitude larger than that typically investigated. The largest network considered in
most analyses, e.g., see [Kessler et al., 1998] and [Ostfeldand Salomons, 2004], is
Walski et al.’s “Anytown U.S.A.” network [et al., 1987], which consists of 34 pipes, 16
nodes, two tanks, one pump, and one well. Berry et al. [2004] solve a dynamic SPOP
via mixed-integer programming for on a network containing roughly 450 junctions and
600 pipes. Watson et al. [2004] examine static SPOP formulations, also in the context
of MIP solvers, using both the smaller 450 junction network in addition to a larger
network with roughly 3500 junctions.

All experiments are conducted on a dual-processor 64-bit 2.2GHz AMD Opteron
workstation with 20 GB of RAM and 60GB of total (RAM plus swap)memory. Despite
the “workstation” label, this platform is far more expensive (roughly USD 25K) and
powerful than a typical desktop machine, e.g., that found ata typical water utility.

Pre-processing, specifically execution of the water quality simulations, requires
non-trivial amounts of computation. For SNL-1, SNL-2, and SNL-3, the respective
mean times required to perform water quality analysis for a single attack are approxi-
mately 0.75, 1.25, and 4 seconds using EPANET on our workstation. Given four pos-
sible attack times per junction, the run-times required to obtain the full suite of water
quality simulations range from under an hour for SNL-1 to over 2 days for SNL-3.

5.2 Solution via Mixed-Integer Programming

Much of the prior research on algorithms for both the static and dynamic SPOP involve
heuristics, e.g., genetic algorithms. Although many authors claim that their heuristics
are capable of locating optimal solutions to test networks,this has never been demon-
strated in a rigorous fashion (e.g., via direct comparison with solutions obtained with
exact algorithms such as MIP solvers). The only analyses using exact algorithms per-
formed to date have not involved heuristics in any capacity;consequently, no perfor-
mance bounds on heuristic algorithms are currently available. Berry et al. [2004] solved
a compact version of the MIP formulation described in§3 for both (1) a set of attacks
at all junctions in a 470-vertex test network and (2) a set of attacks on 100 junctions in
a ≈ 3,500 vertex test network. Both problems were solved in a matter of hours on a
powerful 32-bit workstation with only 4GB of RAM. Given the availability of a more
powerful computing platform, we now consider the scalability of MIP formulations of
the dynamic SPOP to both larger test networks and test networks with larger sets of
attack scenarios.

We use ILOG’s2 AMPL/CPLEX 9.0 MIP solver, which currently represents the
state-of-the-art, to compute optimal solutions to the dynamic SPOP for each of our
test networks for a range of sensor budgets. The computational results for specificp
values, selected to be realistic examples of what might be deployed in practice, are

2www.ilog.com.
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Linear Program Statistics Performance Statistics
Test Instance p Num. Rows Num. Columns Num. Non-Zeros Memory Run-Time

SNL-1 10 185K 185K 550K 2 GB 26 s.
SNL-2 20 8.5M 8.5M 25M 10 GB 4093 s.
SNL-3 50 27.5M 27.5M 82M > 30GB > 3 hrs.

Table 1: Computational results for MIP solution of each of our test networks.

shown in Table 1. All MIPs for SNL-1 and SNL-2 solved without branching, i.e., all
variables were integral in the root LP relaxation. As shown in Table 1, the solution
times are reasonable, although it is clear that both memory and run-time are a concern.
For example, if we consider 24 attack times per junction (oneper each hour of a day),
then under the best-case assumption of at linear scaling, the LP corresponding to SNL-
2 is likely to be intractable. Although we were able to initiate solution of the root LP
for SNL-3, the memory requirements are prohibitive and performance was dominated
by page swapping; minimal progress was made after 3 hours of computation, at which
point we terminated the run.

These experiments identify relatively precise limits on the ability of exact algo-
rithms to solve dynamic SPOPs using modern, high-performance workstations. Specif-
ically, networks with roughly 12,000 junctions and 4 attacktimes per junction appear
to reside at the boundary of what is solvable and what is not. Although not described
here, similar boundaries are reached when allowing 24 attack times per junction for
3,000 junction test networks. Although there are clear limits to scalability of the MIP
formulation described in§3, we do not view the results presented in this section as
negative in any way. When taken in isolation, these results demonstrate the remark-
able power of MIP approaches to solving dynamic SPOPs; no other approach has the
demonstrated ability to solve test networks as large as SNL-2 under the assumption of
multiple attack scenarios per junction. Further, the ability of MIP approaches to iden-
tify optimal solutions to large test networks allows us to quantify – in absolute terms –
the performance of heuristics for the dynamic SPOP.

5.3 Solution via the RW Heuristic

Next, we consider the performance of theRW heuristic on each of our test networks;
the results are reported in Table 2. On both SNL-1 and SNL-2,RW executes in negligi-
ble run-times and requires at most modest amounts of memory.Further, the solutions
generated by the heuristic are provablyoptimal; the impactI or the total number of
gallons of contaminated water consumed is equivalent to that yielded by the exact MIP
solvers, as obtained during the course of the experiments described in§5.2. Although
not reported, we observe identical behavior on a range of sensor budgets. Relative to
the MIP solver, results are obtained 15 to 30 times faster, and require no more than
1/10th of the total memory. However, it is important to note that the heuristic cannot in
isolationprove the optimality of its result.

On SNL-3, theRW heuristic generates a final solution in roughly 29 minutes, while
requiring 9 GB of RAM. In contrast, the MIP approach to solving the same test network
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Performance Statistics
Test Instance p Average Consumption Memory Run-Time

SNL-1 10 663.8 gallons∗ 13MB 2 s.
SNL-2 20 2914.3 gallons∗ 750 MB 130 s.
SNL-3 50 2888.6 gallons 9.0 GB 29 m.

Table 2: Computational results for theRW heuristic on each of our test networks. A “∗”
in theAverage Consumption column indicates the solution is provably optimal; Average
Consumption is defined as the aggregate impact divided by thetotal number of attacks.

consumed 30 GB of total memory in three hours, eventually failing to find a solution
due to excessive swapping. Here, we cannot establish the optimality of the resulting
solution; rather, we can only extrapolate behavioral patterns observed on smaller data
sets, i.e., we conjecture the resulting solution is optimal. This result illustrates the
ability of the heuristic to quickly locate solutions to verylarge test networks. Further,
we observe that this is the largest test network solved to date byany algorithmic method;
the largest network considered previously involves roughly 3500 junctions, with far
fewer attack scenarios.

In our current implementation ofRW, we use a relatively inefficient database stor-
age scheme, such that 24 of the 29 total minutes required to solve SNL-3 are dedicated
to I/O. In preliminary experimentation, we observe that a more compact representa-
tion allows us to reduce this time to less than 3 minutes. The memory requirements
are significant, in thatRW cannot currently be executed on a 32-bit platform for net-
works of this size. As detailed in [Resende and Werneck, 2004], the large memory re-
quirements are due to pre-computations that yield significant run-time improvements.
Consequently, it is therefore possible to take the complementary approach and sacrifice
run-time for reduced memory requirements.

6 Discussion

At the time we initiated this research, exact solution techniques for both static and dy-
namic SPOP formulations were reaching limits on 3,000+ junction test networks, due
to either the 4GB limit on total memory imposed by 32-bit workstations or excessive
computational times exhibited by MIP solvers. Our experiments indicate that while the
availability of powerful 64-bit workstations boosts the magnitude of problem we can
address via MIP solvers, the increase is not appreciable; Berry et al. [2004] report op-
timal solutions for 3,500 junction test networks under a limited set of attack scenarios,
while we are able to locate optimal solutions to the same testnetwork under attack sce-
narios at all possible junctions. Larger test networks are not currently soluble by MIP
approaches, even when expensive high-performance computing platforms and solvers
are available. Consequently, scalability is a major concern, especially given that (1)
we expect to encounter real-world problems with at least 50,000 junctions and (2) we
would like to consider many more than 4 possible attack timesper junction, in order to
prevent us from failing to account for rare but high-impact events. Parallel LP solution
techniques are one possible avenue to alleviate these issues, and is a route that we are
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actively pursuing. Finally, despite scalability issues, it is important to note that MIP
solvers do play a crucial role in sensor placement optimization, in that they allow us
to benchmark heuristic performance in absolute terms. Without such benchmarking,
solution quality cannot be assessed – a situation that is unacceptable when deploying
systems dedicated to providing maximal public health protection.

Heuristics, and in particular theRW algorithm, provide an alternative solution to
the scalability problem. Given the extreme difficulty of large-scale test networks for
MIP solvers, we fully expected that parallel, high-performance computing would be
required to develop effective and scalable heuristics. However, this was not the case;
theRW algorithm is capable of quickly locating optimal solutionsto small-to-medium
sized test networks, and can solve 12,000 junction test networks. Further, as discussed
in §5.3, the moderate memory requirements of theRW algorithm on large networks can
be mitigated by an increase in run-time, which is at worst modest. The ability to solve
such networkswithout the use of high-performance computing platforms is due to a
combination of factors. Most prominently, however, is the fact that the analysis of the
mathematical structure of the dynamic SPOP enabled us to recognize the correspon-
dence with thep-median problem and leverage heuristics that efficiently exploit this
structure.

It is now clear that high-quality solutions to even very large instances of dynamic
SPOP can now be generated using heuristic methods. Althoughfurther research is re-
quired to resolve specific issues relating to efficiency and scalability, we believe the ma-
jor focus of future research on the dynamic SPOP should shiftfrom basic algorithmic
techniques to exploration of more fundamental engineeringissues, including solution
robustness [Carr et al., 2004], worst-case optimization objectives, multiple-objective
analysis [Watson et al., 2004], and improvement of water quality/transport simulations.
Finally, we observe that the major computational bottleneck in solving the dynamic
SPOP using heuristic methods is execution of the requisite water quality simulations.
Parallelism via execution on a Beowulf cluster is the only currently practical approach
that can mitigate the impact of this bottleneck.

7 Conclusions

Researchers have made significant advances in the fidelity ofmodels underlying sen-
sor placement optimization for protection against malicious injection of contaminants
in water distribution networks. Any limitations in accuracy are now largely due to the
fidelity of the water quality simulations or invalid assumptions relating to the attack sce-
nario, sensor behavior, or emergency response protocols. In contrast, algorithmic ad-
vances have lagged the increase in model fidelity. Scalability is a major concern, as all
algorithms for high-fidelity models have only been analyzedin the context of relatively
small test networks. We have illustrated that exact approaches based on mixed-integer
programming can locate optimal solutions to small-to-medium sized test networks, with
reasonable computational effort. However, these methods fail to scale to larger test net-
works. In contrast, state-of-the-art heuristics are capable of locating provably optimal
solutions to small-to-medium test networks in significantly shorter run-times than ex-
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act approaches, and are able to obtain solutions to very large test networks. This is the
first instance in which (1) performance bounds are demonstrated for heuristic methods
for sensor placement and (2) scalability of a heuristic method is conclusively demon-
strated. Consequently, our results serve as a yardstick forfuture research on algorithms
for sensor placement. In particular, we emphasize the necessity for moving beyond
“toy”-sized test networks and, in the case of heuristics, demonstrating performance
relative to known optimal solutions.
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